Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diptikanta Swain and T. N. Guru Row*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012,
Karnataka, India

Correspondence e-mail:
ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
$T=500 \mathrm{~K}$
Mean $\sigma(\mathrm{S}-\mathrm{O})=0.011 \AA$
R factor $=0.058$
$w R$ factor $=0.138$
Data-to-parameter ratio $=12.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$\mathbf{R b}_{2} \mathrm{Cd}_{3}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{OH})_{2} \cdot \mathbf{2 H} \mathbf{H} \mathbf{O}$: structural stability at 500 K

The title compound, dirubidium tricadmium tris(sulfate) dihydroxide dihydrate, consists of sheets of CdO_{6} octahedra and sulfate tetrahedra propagating in the (100) plane, with Rb^{+}ions in the interlayer positions. It is isostructural with $\mathrm{K}_{2} \mathrm{Co}_{3}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Comment

We are interested in evaluating the thermal stability of hydrated mineral salts and the possibility of obtaining intermidiate phases during the dehydration process. Thermogravimetric studies on the double salt $\mathrm{K}_{2} \mathrm{Mn}_{3}\left(\mathrm{SO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Hidalgon et al., 1996) and on $\mathrm{Rb}_{2} \mathrm{Cd}_{3}\left(\mathrm{SO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}($ Swain \& Guru Row, 2005) indicated that the water molecules are lost on heating to temperatures above 350 K .

The title compound, $\mathrm{Rb}_{2} \mathrm{Cd}_{3}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), which arose as an unexpected product during the attempted synthesis of an $\mathrm{Rb}_{3} \mathrm{Cd}_{2}\left(\mathrm{SO}_{4}\right)$ langbeinite-type phase (Nalini \& Guru Row, 2002), displays unusual structural stability beyond 500 K and we present here its structure (Fig. 1) at 500 K to prove this point. It is isomorphous with $\mathrm{K}_{2} \mathrm{Co}_{3}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Effenberger et al., 1984).

The structure of (I) consists of CdO_{6} polyhedra and SO_{4} tetrahedra which are linked by common vertices (Table 1). The ${\mathrm{Cd} 1 \mathrm{O}_{6} \text { polyhedra are linked into dimeric pairs through }}^{2}$ common edges. This entire network extends in (100) (Fig. 2). The Rb ions occupy inter-layer sites with coordination number 8. The Cd ions are octahedrally coordinated by O atoms variously belonging to water molecules, sulfate groups and

Figure 1
View of a fragment of (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level. [Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x,-\frac{1}{2}-y, \frac{1}{2}+z$; (iii) $\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}+z$; (iv) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (v) $-x,-y$, $\frac{1}{2}+z ;$ (vi) $\frac{1}{2}-x,-\frac{1}{2}-y, z-\frac{1}{2}$; (vii) $x-\frac{1}{2},-\frac{1}{2}-y, z-\frac{1}{2}$; (viii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (ix) $\frac{1}{2}-x, \frac{1}{2}+y, z ;(x)-x, y, z$.

Received 11 January 2006
Accepted 21 February 2006
hydroxy groups. There are two types of Cd atoms, one in a general position and the other in a special position with site symmetry m. It is noteworthy that atom Cd1 in a general position is coordinated by a water molecule and its overall coordination is less distorted than that of atom Cd 2 . The water molecule is also coordinated to Rb .

Various $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) help to stabilize the structure. The enhanced thermal stability of (I) relative to the related pentahydrate phases mentioned above may be due to these interactions.

Experimental

Compound (I) was obtained by the slow evaporation of equimolar aqueous solutions containing $\mathrm{Rb}_{2} \mathrm{SO}_{4}$ and CdSO_{4}, followed by dehydration at 873 K for 24 h . The resulting dehydrated powder was crystallized from water at 353 K in an attempt to obtain the langbeinite form. Colourless cylindrical crystals of (I) of reasonable size were obtained after 15 d . The evaporation rate was slowed down considerably by sealing the 5 ml beaker containing the solution under thermostatic control.

Crystal data

$\mathrm{Rb}_{2} \mathrm{Cd}_{3}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=866.43$
Orthorhombic, ${ }_{C m c} 2_{1}$
$a=19.116$ (4) \AA 。
$b=8.0147$ (13) \AA
$c=10.0475(17) \AA$
$V=1539.4(5) \AA^{3}$
$Z=4$
$D_{x}=3.738 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.043, T_{\text {max }}=0.114$
7592 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.138$
$S=1.18$
1616 reflections
133 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 746 reflections
$\theta=0.9-27.3^{\circ}$
$\mu=10.88 \mathrm{~mm}^{-1}$
$T=500$ (2) K
Block, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

1616 independent reflections
1585 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.3^{\circ}$
$h=-23 \rightarrow 23$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1068 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.95 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.17 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \quad \text { with } 665 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.04(2)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.241(9)$	$\mathrm{Cd} 2-\mathrm{O} 8$	$2.234(10)$
$\mathrm{Cd} 1-\mathrm{O} 8^{\text {ii }}$	$2.270(8)$	$\mathrm{Cd} 2-\mathrm{O} 9^{\text {iv }}$	$2.262(11)$
$\mathrm{Cd} 1-\mathrm{O} 9$	$2.280(7)$	$\mathrm{Cd} 2-\mathrm{O}^{\text {v }}$	$2.280(13)$
$\mathrm{Cd} 1-\mathrm{O} 1$	$2.303(9)$	$\mathrm{Cd} 2-\mathrm{O}^{\text {vi }}$	$2.309(8)$
$\mathrm{Cd} 1-\mathrm{O} 10 W$	$2.343(10)$	$\mathrm{Cd} 2-\mathrm{O} 2^{\text {vii }}$	$2.309(8)$
$\mathrm{Cd} 1-\mathrm{O} 7^{\text {iii }}$	$2.352(11)$	$\mathrm{Cd} 2-\mathrm{O} 5$	$2.370(16)$
Symmetry codes: (i) $x,-y, z-\frac{1}{2} ;\left(\right.$ (ii) $-x+\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2} ;\left(\right.$ (iii) $x+\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2} ;($ (iv $)$			
$x-\frac{1}{2}, y-\frac{1}{2}, z ;(\mathrm{v})-x,-y, z+\frac{1}{2} ;\left(\right.$ vi) $-x+\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2} ;$ (vii) $x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$.			

Figure 2
The packing of (I) in a polyhedral representation, viewed down [001]. Colour key: Cd1 octahedra orange, Cd2 octahedra pink, sulfate tetrahedra green, O atoms red, Rb atoms blue and H atoms grey.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 8 \cdots{ }^{\text {d }}$ viii	0.86	2.56	3.347 (18)	152
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O}{ }^{\text {ix }}$	0.86	2.56	3.347 (18)	152
$\mathrm{O} 10 W-\mathrm{H} 10 \mathrm{~A} \cdots \mathrm{O} 4^{\mathrm{x}}$	0.82	2.07	2.776 (13)	145
$\mathrm{O} 10 W-\mathrm{H} 10 B \cdots \mathrm{O}^{\text {xi }}$	0.82	2.42	3.133 (12)	147
$\mathrm{O} 10 W-\mathrm{H} 10 B \cdots \mathrm{O} 6^{\text {xii }}$	0.82	2.42	3.133 (12)	147
$\mathrm{O} 10 W-\mathrm{H} 10 B \cdots \mathrm{O} \mathrm{7}^{\text {xi }}$	0.82	2.51	3.008 (17)	120

Symmetry codes: (viii) $-x,-y-1, z+\frac{1}{2}$; (ix) $x,-y-1, z+\frac{1}{2}$; (x) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (xi)
$x+\frac{1}{2}, y+\frac{1}{2}, z+1$; (xii) $-x+\frac{1}{2}, y+\frac{1}{2}, z+1$.
On accout of their rather anisotropic displacement ellipsoids, splitsite refinements were attempted for atoms O 5 and O 7 but no improvement in the refinement resulted. It appears that atoms O5 and O7 naturally have higher anisotropy in this structure. H atoms of water molecules and hydroxyl groups were positioned geometrically ($\mathrm{O}-\mathrm{H}=0.82$ and $0.86 \AA$, respectively) and refined as riding with the constraint $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ applied.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Betteridge et al., 2003; software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank the Department of Science and Technology, India, for funding this project (DST 066), and also IRHPA-DST for providing the CCD facility at the Indian Institute of Science.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruker (1998). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

inorganic papers

Effenberger, H. \& Langhof, H. (1984). Monatsh. Chem. 115, 165-177.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hidalgon, A., Veintemillas, S., Rodriguez-Clemente, R., Molins, E., Balarew, C., Keremidchieva, B. \& Spasov, V. (1996). Z. Kristallogr. 211, 153-157.

Nalini, G. \& Guru Row, T. N., (2002). Chem. Mater. 14, 4729-4735. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Swain, D. \& Guru Row, T. N. (2005). Acta Cryst. E61, i163-i164.

[^0]: © 2006 International Union of Crystallography All rights reserved

